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Abstract

The present work contributes to the field of numerical simulation of multiphase flows with
a focus on gas bubbles in liquids. The general difficulty in modelling multiphase flows is
to handle the interfaces. An interface can exist between solid, liquid and gaseous phases.
Position and shape of the interface are captured with very different accuracy or are even
neglected, depending on the selected method. If captured, it can be captured implicitly
or explicitly, with the latter providing the most realistic picture. The immersed boundary
code PRIME allows the explicit capture of phase boundaries of the solid-liquid and solid-
gaseous type. The present work contributes to a third boundary type, the interface between
gas and liquid as it appears in bubbly flows. This is a challenge due to the deformability
of the bubbles. The basic idea is two-fold: first, the interface motion and the interfacial
forces are derived from the Navier-Stokes equations, allowing a Lagrangian specification of
the surface motion and the surface loads. Second, based on these equations of motion,
the bubble shape is captured via a non-local parametric representation. Thus, the bubble
is explicitly known as a continuous object. This is an essential difference to conventional
methods, where it is common to define the surface position via marker points or, implicitly,
by an indicator function. Through this continuous, Lagrangian representation, the bubble
can change position and shape and is coupled locally with the fluid field depending on its
location. Advantages are the preservation of the efficiency of the immersed boundary
method, the robustness of the shape even on a coarse grid, the simple calculation of the
surface tension, the exact preservation of the bubble volume, the advantageous collision
behaviour with solid walls as well as the controllability of coalescence and breakup. Further
advantages result from post-processing, because shape parameters can be derived without
any problems. Building on preliminary work, an alternative approach for resolved bubble
modelling is thus available, allowing more advanced numerical predictions in the future.






Zusammenfassung

Die vorliegende Arbeit leistet einen Beitrag im Bereich der numerischen Simulation von
Mehrphasenstromungen mit Schwerpunkt auf Gasblasen in Fliissigkeiten. Die generelle
Schwierigkeit bei der Modellierung von Mehrphasenstromungen besteht im Umgang mit der
Phasengrenze. Diese kann zwischen festen, fliisssigen und gasférmigen Phasen bestehen. Lage
und Form der Phasengrenze werden je nach Methode mit sehr unterschiedlicher Genauigkeit
erfasst oder gar vernachléssigt. Falls sie erfasst wird, kann sie implizit oder explizit erfasst
werden, wobei letzteres das realistischste Bild liefert. Der Immersed-Boundary-Code PRIME
gestattet die explizite Erfassung der Phasengrenzen vom Typ fest-fliissig und fest-gasformig.
Die vorliegende Arbeit treibt die Erweiterung auf den Phasengrenzentypus gasformig-fliissig
voran, wie er in blasenbeladenen Strémungen auftritt. Dies ist aufgrund der Deformier-
barkeit der Gasblasen eine Herausforderung. Die Grundidee ist zweigeteilt: Erstens wird
die Bewegung der Blasenoberflache aus den Standardgleichungen derart hergeleitet, dass sie
eine Lagrangesche Betrachtungsweise der Bewegung und der Kréfte ermdglicht, ohne dass
die Stromung im Blaseninneren abgebildet werden muss. Nachdem diese Bewegungsgle-
ichung bekannt ist, erfolgt zweitens die Erfassung der Blasenform iiber eine nicht-lokale
parametrische Représentation. Damit ist die Blase explizit als kontinuierliches Objekt
bekannt. Dies ist ein wesentlicher Unterschied zu herkémmlichen Methoden, bei denen die
Lage der Phasengrenze iiber Oberflichenpunkte definiert wird oder aus einer Indikatorfunk-
tion rekonstruiert werden muss. Durch diese kontinuierliche, Lagrangesche Repréasentation
kann die Blase Position und Form verdndern und wird je nach Aufenthaltsort lokal mit
dem Fluidfeld gekoppelt. Vorteile sind der Erhalt der Effizienz der Immersed-Boundary-
Methode, die Robustheit der Form auch auf grobem Gitter, die einfache Berechnung der
Oberfldchenspannung, der exakte Erhalt des Blasenvolumens, das vorteilhafte Kollisionsver-
halten mit festen Wénden sowie die Kontrollierbarkeit von Koaleszenz und Breakup. Wei-
tere Vorteile ergeben sich beim Post-Processing, denn Formparameter konnen problemlos
abgeleitet werden. Aufbauend auf Vorarbeiten ist damit ein alternatives Verfahren zur
aufgelosten Blasenmodellierung verfiigbar, was weitergehende numerische Vorhersagen er-
moglicht.
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1 Introduction

1.1 Relevance of modelling bubbly flows

Bubbles accompany our everyday lives from childhood, which is why they seem so familiar
to us. But as usual, a closer inspection reveals the true complexity and what first seemed so
simple is suddenly difficult or impossible to predict. And the quality of our predictions has
always been a good measure of our understanding.

Nature knows many applications for bubbly flows. Water spiders use air bubbles to build
up an underwater oxygen supply, humpback whales trap krill with bubble-nets, star-nosed
moles can track their prey because air bubbles transport the smell, and there are countless
other examples (Langley, 2020). Among these, at least the whales demonstrate a certain
degree of predictive ability and understanding.

Figure 1.1: Air bubbles in water.

The phenomena observed in bubbly flows are numerous. A bubble may grow, deform,
collide, burst or coalesce. And when two bubbles kiss and tumble (Vélez-Cordero et al., 2011)
it is close to a real love story. Typically, a rising bubble may trigger trailing vortices which in
turn affect the bubble shape and its behaviour. The interaction with surrounding fluid can
be very strong and may lead to contrary effects. Bubbles often accelerate the liquid or, quite
the opposite, slow it down. They may generate turbulence - or dampen it. Bubbles are both
fascinating in themselves and even of industrial relevance, for example in pipes (Nakoryakov
et al., 1996; Krepper et al., 2005) or bubble columns (Shu et al., 2019). However, they are
difficult to predict, particularly when they change their shapes.
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Countless experimental and analytical studies have been undertaken to identify the un-
derlying mechanisms needed to predict bubbly flows with deformable bubbles. Many of
them have found their way into the classic text book of Clift et al. (1978), which has served
as a good starting point for decades. Since then, numerous other experiments have been
conducted (Tomiyama et al., 2002a,b; Hosokawa et al., 2002; Aoyama et al., 2016). How-
ever, each measurement technique is limited to certain quantities so that the overall picture
cannot be revealed by experimentalists only.

Numerical simulations of deformable bubbles have proven to be a valuable complement.
Here, a lot of progress has been made since Unverdi and Tryggvason (1992) presented their
pioneering numerical results on deformable bubbles, for example methods like those described
in Feng and Bolotnov (2017); Cifani et al. (2018). But our predictive abilities are still un-
satisfactory. For example, huge numbers of cells are needed, increasing with the bubble’s
Reynolds number (Esmaceli and Tryggvason, 2005). Even though the tremendous growth
of high performance computing is making large simulations more and more affordable, the
computational cost is definitely still one important limiting factor for our predictions. How-
ever, not the only one. There are phenomena which cannot be predicted at all until including
some empirical knowledge.

Each method involves a trade-off between the following criteria:

e suitability for physical problem class and physical system of interest
e accuracy (determined by validation)

e robustness

— numerical stability
— low sensitivity of results

e cfficiency (computational cost)

For a method to be useful at all, each of the four criteria must be met to at least some
degree. Whether these criteria are well balanced can only be judged with respect to the
quantities of interest.

The concluding remarks in Struggle with computational bubble dynamics (Tomiyama,
1998) still apply today:

"Even after almost ten years struggle with Computational Bubble Dynamcis, we
are still not satisfied with our current status [...] what is important for us is to
make the best of the advantages of each method and not to discard a method only
for its temporal shortcomings.”

It is questionable whether an optimal method exists. Any progress towards more sophis-
ticated methods is appreciated. Fortunately, not all ideas have been exploited yet: It turns
out that a novel numerical method for deformable gas bubbles can be derived, rethinking
the work of Schwarz et al. (2016). The resulting method can be seen as a building block for
a general framework which is suitable to predict flow scenarios with rigid particles, flexible
structures, and deformable bubbles.
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1.2 Research goal and structure of the thesis

The goal is to propose a novel numerical method for deformable gas bubbles in liquid.
The main requirements for the method are:

e Each bubble surface is resolved and of variable shape.

e To be suitable for bubble swarms, the method is required to give reasonable results
even for comparatively poor spatial and temporal resolution.

The idea of the method can be summarised as follows:

e Each bubble surface is considered as an embedded boundary. This allows to derive a

local bubble force field, which is only non-zero at the bubble surface’s location.

e Fach bubble surface is represented as global continuous parametrisation. The idea is
taken from Schwarz et al. (2016) and developed further.

The method is developed in four steps:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

This is the present chapter. The following section defines the physical
system of interest as a bubbly flow with deformable gas bubbles
with constant material properties. An overview on existing
methods for this kind of flow is given, clarifying the novelty of the
current approach.

The fundamentals of two-phase flow are recalled in condensed form
to the extent needed. This is necessary to understand the assumptions
in the consecutive derivation steps precisely.

The basic idea is elaborated and the equations of motion for the
embedded interface are derived.

The complete method is obtained combining the equations of
motion from the previous chapter with the continuous representation
of the bubble shape by spherical harmonic functions.

Once the basic method is fully described, it is tested and extended:

Chapter 5

Chapter 6

Chapter 7

The testing phase. Selected verification and validation cases are
presented.

Some bubble phenomena, like breakup or coalescence, cannot be
covered by the proposed method naturally and require sub-models.
Some extensions for the present method are proposed and
demonstrated.

Strengths and limitations of the method. Possible improvements and
conclusions.
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1.3 Physical system of interest

The following physical assumptions are made and valid throughout the present work, unless
stated otherwise:

e The flow is viscous, Newtonian, and incompressible.
e There is no phase change. Temperature changes are negligible.
e The domain is filled with liquid containing a certain number of bubbles.

e Liquid density p, and liquid viscosity p, are constant.

Moreover, the following gas bubble assumptions are made:

e A bubble is defined as fluid particle with comparatively low density and viscosity ratios,
Le. with p, < pg and py < iy

e Density and viscosity are constant within each bubble.

e The surface tension coefficient is constant for each bubble.

e Fach bubble can have different material properties.

As a consequence, the method developed throughout this work is not designed to model

heavy fluid particles with dominant inner friction, i.e. it is not designed to predict droplet
behaviour.
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1.4 Methodical classification

A brief overview of existing numerical methods for flows with deformable bubbles is provided.
For this purpose, a property-based classification is sought first. More general methodical
classifications are available (Loth, 2010). The present method is already taken into account.

Classification. Each method can be characterised by certain modelling decisions, which
are recalled first. Each decision has far-reaching consequences in terms of applicability to
specific problems, accuracy and computational time.

First, one has to decide whether the interface should be resolved or not resolved.
Hence a method can be classified as

I) interface-resolving (zero-thickness or diffuse), or
—I) not interface-resolving.
States in between are conceivable, but not discussed here. A method is considered as
interface-resolving, if it contains the position of the interface and a directional information
for each adjacent phase. Some methods include a diffuse interface representation, others
are based on a zero-thickness representation of the interface. Interface-resolving methods
with zero-thickness representation of the interface are more accurate, but significantly more
expensive which is why they are seldom applied to large problems.
Secondly, one has to decide about the physical model. This implies a decision on the
scales to be modelled. A fluid can be considered as
1. an ensemble of particles, or
2. a continuum.
This decision is closely connected to the third decision, the equations to solve, i.e. the
mathematical model. The most common equations are:
NSE,) n-phase Navier-Stokes equations (n-field or one-field formulation, see Sec. 2)
NSE,) phase-averaged Navier-Stokes equations
NSE;) single-phase Navier-Stokes equations coupled with additional equations of motion
PFE) Phase field equations
)

BE) Boltzmann equation

If the interface is resolved (I), a fourth decision must be made. One has to decide about
the interface storage location. There are mainly three options:
IV) The interface location is not stored explicitly (volume methods).
IS) The interface location is stored explicitly (surface methods).
TA) The interface location is stored as a subset of the fluid mesh (aligned mesh methods).
The idea to distinguish volume and surface methods goes back to Yeoh and Tu (2019).

Volume methods typically base on a globally defined indicator function or volume markers.
In both cases, separate effort must be made to determine the interface position.
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Surface methods realise the interface either

ISD) discretely (usually by a set of surface points with or without connectivity) or

ISC) continuously (as an analytic function).

Remark 1. The terms interface-resolving and phase-resolving are not equivalent. Free
surface flows, for example, are usually modelled interface-resolving, but not fully phase-
resolving as the gas phase is neglected.

Remark 2. Note that the terms volume methods and surface methods are not equivalent
to Fulerian methods and Lagrangian methods. The first two describe the interface storage
location, whereas the last two refer to the frame of reference (spatially fixed or attached to
the moving material, respectively). In principle, volume methods based on a Lagrangian
description are conceivable. This applies analogously to the surface methods which are not
necessarily Lagrangian methods. Eulerian surface methods are conceivable.

Remark 3. The terms interface tracking and interface capturing are also common in
literature. They are not always used consistently, but in the majority of cases they are
defined as synonyms for surface methods (IS) and volume methods (IV), respectively.

Existing methods. Further properties can be identified to distinguish existing approaches.
However, the above should suffice for the current purpose. The most common method which
does not resolve the interface (—I) is the so called Euler-Euler method based on NSE,. The
most common methods which does resolve the interface (I) is the volume of fluid method
purely based on volume fraction transport (NSE,-IV). If extended by a reconstruction al-
gorithm, a surface representation is available (NSE,-IV+S). The classical level-set method
(NSE,-1IV) can be extended to a particle level-set method (NSE,-ISD). The front-tracking
method (NSE,-ISD) is a further example. An overview on the interface-resolving methods
for bubbly flows is given in Tab. 1.1, together with relevant references. Note that the focus
is on bubbles in viscous fluids, which is why methods like the boundary element method
reported in Zhang and Liu (2015) are not included. Note that the overview in Tab.1.1 is
incomplete and that the methods often cannot be sharply distinguished from each other.

Present method. In the present work, a method of type NSE;-ISC is proposed, based
on solving the one-phase Navier-Stokes equations, representing the interface explicitly in a
continuous manner (illustrated in Fig.3.1). The proposed method is already included in
the overview in Tab. 1.1 for guidance, although the details will be explained later. From a
certain perspective, the present method borrows elements from immersed boundary methods,
immersed interface methods, front-tracking methods and even ghost-cell methods. To the
best of the author’s knowledge, there is no method of this type yet.
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